
Коллекции 

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР

ПРОГРАММИРОВАНИЯ И ВЫСОКИХ ТЕХНОЛОГИЙ

2 0 2 0 г.



 Стандартные коллекции
 Коллекции-списки
 Коллекции-словари
 Специальные типы коллекций: стек, очередь, хэш-таблица



Стандартные коллекции

Пространства имен содержащие коллекции:
System.Collections – содержит типы, в которых элемент коллекции представлен как

object (слаботипизированные коллекции).
System.Collections.Generic – универсальные классы и интерфейсы коллекций.
System.Collections.Specialized – специальные классы коллекций.

Интерфейсы используемые коллекциями:
IEnumerable<T> и IEnumerable – предоставляют возможность перечислить её

элементы.
ICollection, IList, IDictionary – предоставляют возможность определения размера

коллекции, доступа к элементу по индексу, поиска элемента и модификации коллекции.
IEqualityComparer<T> и IEqualityComparer – интерфейсы предоставляют

возможность сравнения объектов и проверки объектов на равенство.

Возможности предоставляемые коллекциями:
 Встроенные функции.
 Сортировки.
 Индексирования.
 Автоматическое управление памятью (расширение).
 Синхронизация при доступе к элементам.



Коллекции-списки

Класс List<T> из пространства имён System.Collections.Generic – это основной класс 
для представления обычных списков.

Упорядоченный набор значений, в котором некоторое значение может встречаться 
более одного раза.

List<T> listOfTypes = new List<T>() { T, T, T }; // где T –
любой тип.

Класс ArrayList является необобщенной коллекцией, потому что в этой коллекции 
хранятся элементы разного типа.

Могут быть сложности с обработкой элементов коллекции.

ArrayList arrNumbers = new ArrayList();

arrNumbers.Add(1);

arrNumbers.Add(“Hello!");



Коллекции-списки

Класс LinkedList<T> служит для представления двусвязного списка.

Такой список позволяет осуществлять вставку и удаление элемента без сдвига
остальных элементов.

Здесь ссылки в каждом узле указывают на предыдущий и на последующий узел в
списке. По двусвязному списку можно передвигаться в любом направлении - как к
началу, так и к концу.

LinkedList <T> listOfTypes = new LinkedList <T>() { T, T, T 

}; // где T – любой тип.



Коллекции-словари

Класс Dictionary<TKey,TValue> представляет собой классический словарь с
возможностью указать тип для ключа и тип для значения.

Словарь хранит объекты, которые представляют пару ключ-значение.

Каждый такой объект является объектом структуры KeyValuePair<TKey, TValue>.
Благодаря свойствам Key и Value, которые есть у данной структуры, мы можем получить
ключ и значение элемента в словаре.

Ключ должен иметь уникальное значение.

Dictionary dictionary = new Dictionary<string, int>();

dictionary.Add("Cheese", 50);

dictionary.Add("Vine", 40);



Коллекции-словари

В C# 5.0 мы могли инициализировать словари следующим образом:

Dictionary<string, string> countries = new Dictionary<string, 
string>

{

{"Франция", "Париж"},

{"Германия", "Берлин"},

{"Великобритания", "Лондон"}

};

foreach(var pair in countries)

Console.WriteLine("{0} - {1}", pair.Key, pair.Value);

Начиная с C# 6.0 доступен также еще один способ инициализации:
Dictionary<string, string> countries = new Dictionary<string, 

string>
{

["Франция"]= "Париж",
["Германия"]= "Берлин",
["Великобритания"]= "Лондон"

};



Стэк
Класс Stack<T> представляет коллекцию, которая использует алгоритм LIFO

("последний вошел – первый вышел"). При такой организации каждый следующий
добавленный элемент помещается поверх предыдущего. Извлечение из коллекции
происходит в обратном порядке – извлекается тот элемент, который находится выше
всех в стеке.

Основные методы, которые позволяют управлять элементами:
Метод Push – добавляет элемент в стек на первое место.
Метод Pop – извлекает и возвращает первый элемент из стека.
Метод Peek – просто возвращает первый элемент из стека без его удаления.

Stack goods = new Stack();

goods.Push("Cheese");

goods.Push("Vine");

Console.WriteLine(goods.Pop()); // Vine

Console.WriteLine(goods.Pop()); // Cheese



Очередь
Класс Queue<T> представляет обычную очередь, работающую по алгоритму FIFO

("первый вошел – первый вышел").

Основные методы, которые позволяют управлять элементами:
Метод Dequeue – извлекает и возвращает первый элемент очереди.
Метод Enqueue – добавляет элемент в конец очереди.
Метод Peek – просто возвращает первый элемент из начала очереди без его

удаления.

Queue myQ = new Queue();

myQ.Enqueue("Hello");

myQ.Enqueue("World");

Console.WriteLine(myQ.Dequeue()); // Hello

Console.WriteLine(myQ.Dequeue()); // World



Хэш-таблица
Класс Hashtable предназначен для создания коллекции, в которой для хранения ее

элементов служит хеш-таблица.

Информация сохраняется в хеш-таблице с помощью механизма, называемого
хешированием.

При хешировании для определения уникального значения, называемого хеш-кодом,
используется содержимое специального ключа.

Полученный в итоге хеш-код служит в качестве индекса, по которому в таблице
хранятся искомые данные, соответствующие заданному ключу. Преобразование ключа в
хеш-код выполняется автоматически, и поэтому сам хеш-код вообще недоступен
пользователю.

Hashtable ht = new Hashtable();

ht.Add("alex85", "12345");

ht.Add("fg230404", "12ldsd");



Пользовательские коллекции
Иногда требуется создать собственный тип-коллекцию.

Например, в случае, когда изменение коллекции должно генерировать событие, или
в случае, когда необходима дополнительная проверка данных при помещении их в
коллекцию.

Для этого используется универсальный класс Collection<T>.

public class Collection<T> : IList<T>, ICollection<T>,
IEnumerable<T>,

IList, ICollection, IEnumerable

{

protected IList<T> Items { get; }

protected virtual void ClearItems();

protected virtual void InsertItem(int index, T item);

protected virtual void RemoveItem(int index);

protected virtual void SetItem(int index, T item);

}



Задания
Задание 1
Создайте 2 списка. Первый типа ArrayList и второй List<T> - где «T» будет любым из

базовых типов по вашему выбору.

Добавьте в каждый из списко 2 новых элемента.
Удалите элемент с индексом 3.
Удалите из списка 1 добавленный вами элемент.
Отсорируйте полученный список.

После каждого изменения списка выводите его на экран.

Задание 2
Создайте пользовательский список.
Реализуйте добавление в список нового объекта так, чтобы после добавления

список сортировался по одному из свойств вашего класса.

Заполните список начальными данными.
Добавьте в ваш список новый элемент.

После каждого изменения списка выводите его на экран.


