
Тип System.Object

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР

ПРОГРАММИРОВАНИЯ И ВЫСОКИХ ТЕХНОЛОГИЙ

2 0 2 0 г.



 Основные методы System.Object
 Сравнение объектов
 Хэш-код и особенности переопределения методов сравнения
 Структуры и перечисления
 Рекурсия
 Основы отладки кода
 Упаковка и распаковка



Основные методы System.Object

Все классы в .NET являются производными от класса Object.

Так же, все значимые типы являются производными от базового класса ValueType.

Все типы и классы могут реализовать методы, которые определены в классе
System.Object.

Метод Equals(Object) – определяет, равен ли указанный объект текущему объекту.
Метод GetHashCode() – служит в качестве хэш-функции по умолчанию.
Метод GetType() – получает тип текущего экземпляра.
Метод MemberwiseClone() – создает копию текущего объекта.
Метод ReferenceEquals(Object, Object) – определяет, ссылаются ли указанные

объекты на один и от же объект в памяти.
Метод ToString() – возвращает строковое представление текущего объекта.



Сравнение объектов

ReferenceEquals – сравнивает две ссылки. Если ссылки на объекты идентичны, то
возвращает true.

В случае передачи этому методу экземпляров значимого типа (даже если передать
один и тот же экземпляр) всегда будет возвращать false. Так произойдёт потому, что при
передаче произойдёт упаковка значимых типов и ссылки на них будут разные.

Здесь также хотелось бы упомянуть о сравнение двух строк этим методом. Он может
вернуть true и связано это с интернированием строк.

Equals - сначала этот метод проверяет экземпляры на тождество и если объекты не
тождественны, то проверяет их на null и делегирует ответственность за компарацию
переопределяемому экземплярному методу Equals. По умолчанию, этот метод ведёт
себя точно также как ReferenceEquals. Однако для значимых типов он переопределён.

Оператор == – для значимых типов всегда следует переопределять, как и
виртуальный Equals(). Для ссылочных типов лучше не переопределять, ибо, по
умолчанию, от == на ссылочных типах ожидается поведение как у метода
ReferenceEquals().



Хэш-код

Хеширование – преобразование входного массива данных произвольной длины в
выходную битовую строку фиксированной длины. Результатом хэширования является
хэш-код.

Хэш-код представляет из себя уникальный идентификатор объекта.

GetHashCode() – в общем и целом, стандартная реализация этого метода ведёт себя
как генератор уникального идентификатора. Минус такого подхода состоит в том, что
одинаковые семантически объекты, могут возвращать разные hash-значения.

Требования к реализации GetHashCode():
 Высокая производительность.
 Хэш-код должен иметь большой разброс в результате.



Структуры и перечисления

Сруктуры:
 Представляют собой ещё один пользовательский тип в C#.
 Используется ключевое слово struct.
 Являются значимым типом данных.

Как и class может использовать конструктор, но это не является обязательным
условием. В этом случае необходимо явно инициализировать поля структуры.

struct User

{

public string name; 

public void DisplayInfo()

{ }

}



Структуры и перечисления

Перечисления:
 Особый тип данный языка C#.
 Представляет набор логически связанных констант. 
 Используется ключевое слово enum.
 Тип перечисления обязательно представляет целочисленный тип.
 Каждому элементу перечисления присваивается целочисленное значение.

enum Sex : byte // имя и тип перечисления

{

Male,

Female

}



Рекурсия

Рекурсия – это метод, который в ходе своего выполнения вызывает сам себя.

Необходимо предусмотреть условие выхода из рекурсии.

static int Factorial(int x)

{

if (x == 0)

{

return 1;

}

else

{

return x * Factorial(x - 1);

}

}



Основы отладки кода

Если у вас появилась проблема, проанализируйте её и действия которые привели к
её появлению:

 Что именно должен был выполнить код?
 Что произошло вместо этого?

Используйте режим пошагового выполнения во время отладки для поиска места
возникновения проблемы.

Чтобы перейти в режим отладки в Visual Studio, необходимо нажать
клавишу F5 (также вы можете выбрать пункт меню «Отладка» > «Начать» отладку или
нажать кнопку «Начать отладку» в панели инструментов «Отладка»).

Если возникает исключение, помощник по исправлению ошибок Visual Studio
направит вас к точке его появления и предоставит другую необходимую информацию.



Стратегия поиска ошибок

 Ручная отладка кода при помощи точек останова.
 Использование конструкции try...catch...finally.

try
{

// блок кода в котором ожидантся исключение
}
catch
{

// блок кода для обработки исключения
}
finally
{

// блок кода который выполнится в любом случае
}



ФОРМЫ ЗАПИСИ АЛГОРИТМОВ

Так как System.Object является
предком любого типа,
переменной типа object можно
присвоить любую переменную.

Для типов значений
выполняется специальная
операция, называемая операцией
упаковки (boxing).

Обратное преобразование –
операция распаковки (unboxing).



Задание

1. Создать тип Car с двумя полями: int Age и Color Color. Color – это enum. Сделать 

так, чтобы при равных Age и Color, операция == и Equals() возвращалось True.

2. Добавить типу Car возможность сортироваться, если он содержится в коллекции.

3. Сделать так, чтобы условный оператор If(Car car) возвращал true, если Age > 4, 

иначе false.


