
Рефлексия

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР

ПРОГРАММИРОВАНИЯ И ВЫСОКИХ

ТЕХНОЛОГИЙ

2 0 2 0 г.

 Метаданные типа
 Получение данных о типе
 Изменение данных с помощью рефлексии
 Создание экземпляров при помощи рефлексии

Рефлексия

Рефлексия – процесс инспектирования метаданных и скомпилированного кода во
время выполнения приложения.

Рефлексия – процесс выявления типов во время выполнения приложения.

Каждая сборка содержит набор используемых классов, интерфейсов, а также их
методов, свойств и т.д., из которых и складывается приложение. Рефлексия позволяет
определить все эти составные элементы сборки.

Скомпилированный код в сборке включает практически все содержимое исходного
кода. Некоторая информация утрачивается, например: имена локальных переменных,
комментарии и директивы предпроцессора.

Рефлексия

Класс Описание

Assembly Класс, представляющий сборку и позволяющий манипулировать этой
сборкой.

AssemblyName Класс, хранящий информацию о сборке.

MemberInfo Базовый абстрактный класс, определяющий общий функционал для
классов EventInfo, FieldInfo, MethodInfo и PropertyInfo.

EventInfo Класс, хранящий информацию об определенном событии.

FieldInfo Класс, хранящий информацию об определенном поле типа.

MethodInfo Класс, хранящий информацию об определенном методе.

PropertyInfo Класс, хранящий информацию об определенном свойстве.

ConstructorInfo Класс, хранящий информацию об определенном конструкторе.

ParameterInfo Класс, хранящий информацию о параметре метода.

Основной функционал рефлексии сосредоточен в пространстве имен System.Reflection.

Метаданные типа

Метаданные типов содержат следующие данные:
 Имя, видимость, базовый класс и реализованные интерфейсы.
 Элементы типа (методы, поля, свойства, события, вложенные типы).

Экземпляр класса System.Туре представляет метаданные для типа. Поскольку класс
Туре применяется очень широко, он находится в пространстве имен System, а не в
System.Reflection.

Класс System.Туре является абстрактным, поэтому операция получения типа должна
на самом деле давать подкласс класса Туре. Среда CLR использует внутренний подкласс
сборки mscorlib по имени RuntimeType.

Метаданные типа

Метод Описание

FindMembers() Возвращает массив объектов MemberInfo данного типа.

GetConstructors() Возвращает все конструкторы типа в виде набора объектов
ConstructorInfo.

GetEvents() Возвращает все события типа в виде массива объектов EventInfo.

GetFields() Возвращает все поля типа в виде массива объектов FieldInfo.

GetInterfaces() Возвращает все реализуемые данным типом интерфейсы в виде
массива объектов Type.

GetMembers() Возвращает все члены типа в виде массива объектов MemberInfo.

GetMethods() Возвращает все методы типа в виде массива объектов MethodInfo.

GetProperties() Возвращает все свойства типа в виде массива объектов PropertyInfo.

Класс System.Type представляет изучаемый тип, инкапсулируя всю информацию о
нем. С помощью его свойств и методов можно получить эту информацию.

Рефлексия

Свойство Описание

Name Возвращает имя типа.

Assembly Возвращает название сборки, где определен тип.

Namespace Возвращает название пространства имен, где определен тип.

FullName Возвращает полное имя типа.

IsArray Возвращает true, если тип является массивом.

IsClass Возвращает true, если тип представляет класс.

IsEnum Возвращает true, если тип является перечислением.

IsInterface Возвращает true, если тип представляет интерфейс.

AssemblyQualifiedName Возвращает значение свойства FullName и полное имя сборки.

AssemblyQualifiedName – возвращает значение которое можно передавать методу
GetType(), и он уникальным образом идентифицирует тип внутри стандартного
контекста загрузки.

Метаданные типа

Тип имеет свойства Namespace, Name и FullName. В большинстве случаев FullName
является объединением первых двух свойств:

Туре t = typeof(System.Text.StringBuilder);

Console.WriteLine(t.Namespace); // System.Text

Console.WriteLine(t.Name); // StringBuilder

Console.WriteLine(t.FullName); // System.Text.StringBuilder

Из этого правила существуют два исключения: вложенные типы и закрытые
обобщенные типы.

В случае вложенных типов содержащий тип присутствует только в FullName:

Туре t = typeof (System.Environment.SpecialFolder);

Console.WriteLine (t.Namespace); // System

Console.WriteLine (t.Name); // SpecialFolder

Console.WriteLine (t.FullName);

// System.Environment+SpecialFolder

Метаданные типа

Имена обобщенных типов снабжаются суффиксами в виде символа ' , за которым
следует количество параметров типа. Если обобщенный тип является несвязанным, это
правило применяется и к Name, и к FullName:

Туре t = typeof(Dictionary<, >); // Unbound (несвязанный)

Console.WriteLine(t.Name); // Dictionary'2

Console.WriteLine(t.FullName);

//System.Collections.Generic.Dictionary'2

Однако если обобщенный тип является закрытым, то свойство FullName
приобретает важное дополнение: список всех параметров типа, для каждого из
которых указывается полное имя, включающее сборку.

Console.WriteLine (typeof (Dictionary<int,string>).FullName);

// ВЫВОД:

System.Collections.Generic.Dictionary'2[[System.Int32, …],

[System.String, …]]

Получение данных о типе

Получить экземпляр System.Туре можно путем вызова метода GetType() на любом
объекте или с помощью операции typeof языка С#:

Туре tl = DateTime.Now.GetType();

// Экземпляр Туре, полученный во время выполнения

Туре t2 = typeof(DateTime);

// Экземпляр Туре, полученный на этапе компиляции

object obj = "hello";

Type t1 = typeof(object); // ==> object

Type t2 = obj.GetType(); // ==> string!

Важно понимать, что:
 typeof – это оператор для получения типа, известного во время компиляции.
 GetType() – это метод, который вы вызываете для отдельных объектов, чтобы

получить тип времени выполнения объекта.

Изменение данных с помощью рефлексии

Использование рефлексии также позволяет динамически получить и установить
значение поля объекта по имени. Имея объект MethodInfo, PropertyInfo или FieldInfo, к
нему можно динамически обращаться либо извлекать/устанавливать его значение. Это
называется динамическим связыванием или поздним связыванием, т.к. выбор
вызываемого члена производится во время выполнения, а не на этапе компиляции. Для
этого используются методы GetValue() и SetValue().

Использование рефлексии позволяет изменять даже скрытые поля объекта.

Assembly a = Assembly.Load(@"Libra");

Type t = a.GetType("booleanField");

FieldInfo field = t.GetField("enabled",

BindingFlags.NonPublic);

field.SetValue(a, false);

Console.WriteLine(field.GetValue(a));

Создание экземпляров

Сильные стороны рефлексии проявляются наиболее заметно лишь в том случае,
если объект создается динамически во время выполнения. И для этого необходимо
получить сначала список конструкторов, а затем экземпляр объекта заданного типа,
вызвав один из этих конструкторов. Такой механизм позволяет получать во время
выполнения экземпляр объекта любого типа, даже не указывая его имя в операторе
объявления.

Динамически создать объект из его типа можно двумя путями:
 Вызвать статический метод Activator.Createlnstance().
 Вызвать метод Invoke() на объекте Constructorlnfo, который получен в результате

вызова метода GetConstructor() на экземпляре Туре.

Атрибуты

Атрибуты в .NET представляют специальные инструменты, которые позволяют
встраивать в сборку дополнительные метаданные. Атрибуты могут применяться как ко
всему типу (классу, интерфейсу и т.д.), так и к отдельным его частям (методу, свойству и
т.д.). Основу атрибутов составляет класс System.Attribute, от которого образованы все
остальные классы атрибутов.

В .NET имеется множество различных классов атрибутов. Например, при
сериализации в различные форматы используются
атрибуты [Serializable] и [NonSerialized]. С помощью рефлексии стандартные классы
.NET получают использованные атрибуты и производят определенные действия.
Например, атрибут [Serializable] указывает классу BinaryFormatter, что объекты с
данным атрибутом можно сохранять в бинарный файл. В то ж время пока к классу с
атрибутом не применена рефлексия, атрибут не размещается в памяти, и никакого
влияния на данный класс не оказывает.

Атрибуты

С помощью атрибута AttributeUsage можно ограничить типы, к которым будет
применяться атрибут. Например, мы хотим, чтобы определенный атрибут мог
применяться только к классам.

[AttributeUsage(AttributeTargets.Class)]

public class RoleInfoAttribute : System.Attribute

{

// Блок кода

}

С помощью атрибута AttributeUsage можно ограничить типы, к которым будет
применяться атрибут. Например, мы хотим, чтобы определенный атрибут мог
применяться только к классам.

Атрибуты

Ограничение задает перечисление AttributeTargets, которое может принимать еще
ряд значений:

 All: используется всеми типами;
 Assembly: атрибут применяется к сборке;
 Constructor: атрибут применяется к конструктору;
 Delegate: атрибут применяется к делегату;
 Enum: применяется к перечислению;
 Event: атрибут применяется к событию;
 Field: применяется к полю типа;
 Interface: атрибут применяется к интерфейсу;
 Method: применяется к методу;
 Property: применяется к свойству;
 Struct: применяется к структуре.

С помощью логической операции ИЛИ можно комбинировать эти значения.
Например, атрибут может применяться к классам и структурам:
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)].

Задание

Возьмите файл Car.dll и сделайте так, чтобы я смог вызвать метод CarMethod() со строкой и

увидел эту строку в консоли. DLL содержит:

namespace Car

{

public class MyCar

{

private int age;

private void CarMethod(string value)

{

if (age < 5)

{

throw new Exception("Неа");

}

Console.WriteLine(value);

}

}
}

Задание

Написать свой атрибут, который будет задавать валидационные правила для класса Car. Он должен
смотеть, чтобы цвет и возраст машины соответствовал условиям (задайте сами).
Т е создали машину и проверили, что она валидная по условиям из атрибута.

