
Сборки

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР

ПРОГРАММИРОВАНИЯ И ВЫСОКИХ ТЕХНОЛОГИЙ

2 0 2 0 г.



 Понятие сборок в .NET
 Подпись сборок и строгие имена
 Домен приложения
 Загрузка сборок в домен
 Маршалинг, обмен данными между доменами
 GAC



Понятие сборок в .NET

Результатом компиляции в Visual Studio или в консоли является файл .exe или .dll (в
зависимости от выбранных настроек), который называется сборкой приложения.

Сборка является базовой структурной единицей в .NET, на уровне которой проходит
контроль версий, развертывание и конфигурация приложения.

Сборки имеют следующие составляющие:
Манифест, который содержит метаданные сборки.
Метаданные типов. Используя эти метаданные, сборка определяет размещение

типов в памяти.
 Код приложения на языке MSIL, в который компилируется код C#.
 Ресурсы.

Все эти компоненты могут находиться в одном файле, и тогда сборка представляет
один единственный файл или эти компоненты могут хранится в отдельных файлах.
Основной файл exe, который имеет метаданные сборки и типов и который использует
дополнительные файлы ресурсов.



Понятие сборок в .NET

Ключевым компонентом сборки является ее манифест. Если у сборки отсутствует
манифест, то заключенный в ней код MSIL выполняться не будет. Манифест может
находиться в одном файле с исполняемым кодом сборки, а может размещаться и в
отдельном файле.

Манифест хранит следующие данные:
 Имя сборки.
 Номер версии - используется для управления версиями.
 Язык и региональные параметры.
 Информация о строгом имени - открытый ключ издателя.
 Список всех файлов сборки, хэш и имя каждого из входящих в сборку файлов.
 Список ссылок на другие сборки, которые использует текущая сборка.
 Список ссылок на типы, используемые сборкой.

Таким образом, манифест позволяет системе определить все файлы, входящие в
сборку, сопоставить ссылки на типы, ресурсы, сборки с их файлами, управлять
контролем версий.



Понятие сборок в .NET

По способу взаимодействия с другими сборками и приложениями сборки можно
разделить на две категории: закрытые и разделяемые.

Закрытые сборки это обычные сборки приложения, которые создаются, к примеру в
Visual Studio. При создании библиотеки классов dll создается закрытая сборка. Такую
закрытую сборку можно использовать подключив ее к другому проекту. Чтобы это
сделать можно просто положить сборку рядом с исполняемым файлом и добавить в
проект ссылку на нее через «Add Reference».

Разделяемые сборки находятся в глобальном кэше сборок (Global Assembly Cache).
Самое очевидное отличие между разделяемой и закрытой сборкой состоит в том, что
одна копия разделяемой сборки может использоваться сразу в нескольких приложениях
на одной и той же машине.



Подпись сборок и строгие имена

Формально любое строгое имя состоит из набора взаимосвязанных данных,
большая часть из которых указывается с помощью перечисленных ниже атрибутов
уровня сборки:

 Дружественное имя сборки (которое представляет собой имя сборки без
файлового расширения).

 Номер версии сборки (назначается в атрибуте [AssemblyVersion]).
 Значение открытого ключа (назначается в атрибуте [AssemblyKeyFile]).
 Значение, обозначающее культуру, которое является необязательным и может

предоставляться для локализации приложения (присваивается в атрибуте
[AssemblyCulture]).

 Вставляемая цифровая подпись, созданная с использованием хеш-кода по
содержимому сборки и значения секретного ключа.

Благодаря строгому имени гарантируется уникальность сборки в глобальном кэше.

Строгие имена также обеспечивают определенную степень защиты от возможной
подделки содержимого сборок.



Домен приложения

В .NET исполняемые файлы не обслуживаются прямо внутри процесса Windows, как
это происходит в случае традиционных неуправляемых приложений. Вместо этого они
обслуживаются в отдельном логическом разделе внутри процесса, который называется
доменом приложения (Application Domain - AppDomain).

Домен приложения – это механизм, реализованный в .NET, который позволяет
запустить группу приложений в одном процессе, обеспечивая относительную изоляцию
их друг от друга, в то же время позволяя им взаимодействовать друг с другом
значительно быстрее, чем в случае отдельных процессов.

Один процесс может содержать любое число доменов приложения, каждый из
которых полностью изолирован от других доменов приложения в рамках данного
процесса (а также любого другого процесса). С учетом этого следует понимать, что
приложение, выполняющееся в одном домене приложения, не может получить данные
(в частности, значения глобальных переменных или статических полей) другого домена
приложения иначе, как с помощью протокола удаленного взаимодействия .NET.



Домен приложения

Для управления домена платформа .NET предоставляет класс AppDomain.

Рассмотрим некоторые основные методы и свойства данного класса:
 Свойство BaseDirectory – базовый каталог, который используется для получения

сборок (как правило, каталог самого приложения).
 Свойство CurrentDomain – домен текущего приложения.
 Свойство FriendlyName – имя домена приложения.
 Свойство SetupInformation – представляет объект AppDomainSetup и хранит

конфигурацию домена приложения.
Метод ExecuteAssembly() – запускает сборку exe в рамках текущего домена

приложения.
Метод GetAssemblies() – получает набор сборок .NET, загруженных в домен

приложения.



Загрузка сборок в домен

Сборки, на которые ссылается программа, загружаются автоматически средой CLR,
но в текущий домен приложения можно также динамически загрузить конкретные
сборки.

Для загрузки сборок класс AssemblyLoadContext предоставляет ряд методов:
 LoadFromAssemblyName (AssemblyName assemblyName) – загружает

определенную сборку по имени, которое представлено типом
System.Reflection.AssemblyName.

 LoadFromAssemblyPath (string assemblyPath) – загружает сборку по
определенному пути (путь должен быть абсолютным).

 LoadFromStream (System.IO.Stream stream) – загружает определенную сборку из
потока Stream.

В .NET Framework можно было создавать вторичные домены и загружать в них
различные сборки. В .NET Core можно использовать только один домен.



Маршалинг, обмен данными между доменами

Маршаллинг – это передача сущности из одного контекста в другой.

Сериализация – это запись в виде последовательности элементов.

Маршаллинг – это процесс более высокого уровня, чем сериализация. Обычно, если
надо передать структуру данных из одного процесса в другой – ее сериализуют,
передают и десериализуют. Если параметр двусторонний – то и передавать его надо
будет два раза, при этом это будет одна операция маршаллинга.

Или возможна передача по ссылке, когда на другой стороне канала создается
прокси-объект, а через канал передается не внутреннее состояние объекта, а вызовы
его методов.

Если речь идет о взаимодействии между управляемым и неуправляемым кодом – то
маршаллинг заключается в фиксировании адресов объектов или в копировании структур
между управляемой и неуправляемой памятью, сериализация тут вовсе не
используется.



GAC

Глобальный кэш сборок .NET – это кэш кода. Глобальный кэш сборок
устанавливается автоматически на каждом компьютере с установленной средой CLR
.NET. Любое приложение, установленное на компьютере, может получать доступ к
глобальному кэшу сборок. Глобальный кэш сборок содержит сборки, предназначенные
для совместного использования несколькими приложениями на компьютере.

К сборкам, расположенным в GAC, предъявляется несколько требований. В
частности, они должны использовать строгое имя, соблюдать строгую схему указания
версий и допускать исполнение нескольких версий кода в рамках единого приложения.

Устанавливайте сборку только в глобальном кэше сборок, когда вам потребуется
предоставить доступ к сборке. Если не требуется предоставлять доступ к сборке явно,
рекомендуется хранить ее в закрытом виде, а сборку указать в каталоге приложения.
Кроме того, вам не нужно устанавливать сборку в глобальный кэш сборок, чтобы
сделать сборку доступной для взаимодействия COM или неуправляемого кода.



GAC

Существует несколько причин для установки сборки в глобальном кэше сборок.
 Общее расположение – используемые несколькими приложениями сборки

можно располагать в глобальном кэше сборок.

 Безопасность файлов – администраторы часто защищают папку systemroot с
помощью списка управления доступом, определяющего права на запись и
выполнение. Так как глобальный кэш сборок размещается в корневом каталоге
системы, он наследует список управления доступом этого каталога.

 Управление параллельными версиями – в глобальном кэше сборок может
храниться несколько сборок, имеющих одинаковые имена, но различные
сведения о версии.

 Дополнительное место для поиска – перед проверкой или использованием
сведений о базе кода в файле конфигурации среда CLR ищет в глобальном кэше
сборки, соответствующие запросу.


