
Массивы и строки

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР

ПРОГРАММИРОВАНИЯ И ВЫСОКИХ ТЕХНОЛОГИЙ

2 0 2 0 г.

 Одномерные массивы
 Многомерные массивы
 Ступенчатые массивы
 Строки и класс StringBuilder
 Сравнение строк

Начальные сведения о массивах

Массивы – упорядоченные коллекции элементов с одним и тем же типом данных.
CLR поддерживает одномерные, многомерные и неравномерные массивы. Базовым для
всех массивов является абстрактный класс System.Array, производный от System.Object.

Массивы относятся к ссылочному типу и размещаются в управляемой куче, а
переменная в приложении содержит не элементы массива, а ссылку на массив.

Элементы массива всегда хранятся в непрерывном блоке памяти.

При создании массива всегда происходит инициализация его элементов
стандартными значениями.

Int32[] myIntegers; // Объявление ссылки на массив

myIntegers = new Int32[100]; // Создание массива типа Int32

//Создание массива можно совместить с его объявлением:

int[] data = new int[10];

Начальные сведения о массивах
Свойство Length массива возвращает количество элементов в массиве. Изменить

длину массива после его создания невозможно.

Для обращения к элементам массива используются индексы. Индекс представляет
номер элемента в массиве, при этом нумерация начинается с нуля.

По умолчанию в качестве индекса массива используется значение типа Int32 с
начальным значением «0».

Для доступа к элементу массива указывается имя массива и индекс в квадратных
скобках: data[0] = 10;

// Cпособы задания элементов массива при создании:

int[] data_1 = new int[4] { 1, 2, 3, 5 };

int[] data_2 = new int[] { 1, 2, 3, 5 };

int[] data_3 = new[] { 1, 2, 3, 5 };

int[] data_4 = { 1, 2, 3, 5 };

Класс «Array»
Все массивы в C# построены на основе класса Array из пространства имен System.

Этот класс определяет ряд свойств и методов, которые мы можем использовать при
работе с массивами.

Свойство Length – возвращает длину массива.
Свойство Rank – возвращает размерность массива.
Метод BinarySearch() – выполняет бинарный поиск.
Метод Clear() – очищает массив, устанавливая значение по умолчанию.
Метод Exists() – проверяет, содержит ли массив определенный элемент.
Метод Find() – находит элемент, который удовлеворяют условию.
Метод FindAll() – находит все элементы, которые удовлеворяют условию.
Метод IndexOf() – возвращает индекс элемента.
Метод Resize() – изменяет размер одномерного массива.
Метод Sort() – сортирует элементы одномерного массива.
Метод GetUpperBound() – получает индекс последнего элемента указанного

измерения в массиве.

У каждого из этих методов существует множество перегруженных версий. Для
многих из них имеются обобщенные перегруженные версии, обеспечивающие контроль
типов во время компиляции и высокую производительность.

Одномерные массивы

Одномерный массив хранит фиксированное число элементов в линейном порядке, и
для определения каждого элемента требуется лишь одно значение индекса.

// Инициализация в цикле

int[] TaxRates = new int[5];

for (int i=0; i<TaxRates.Length; i++)

{

TaxRates[i] = 0;

}

Многомерные массивы
Массивы характеризуются таким понятием как ранг или количество измерений.

Соответственно могут быть массивы с различным количеством измерений. Но на
практике обычно используются одномерные и двухмерные массивы.

Определенную сложность может представлять перебор многомерного массива.
Надо учитывать, что длина такого массива - это совокупное количество элементов.

// Двумерный массив d:

int[,] d;

d = new int[10,2];

// Трехмерный массив Cube:

int[,,] Cube = new int[3,2,5];

// Объявим двумерный массив и инициализируем его:

int[,] c = new int[2,4] {

{1, 2, 3, 4},

{10, 20, 30, 40}};

Ступенчатые массивы

Ступенчатый массив (массив массивов, невыровненный массив) – это массив,
элементы которого сами являются массивами.

Внутренние измерения в объявлении не указываются, т.к. в отличие от
прямоугольного массива каждый внутренний массив может иметь произвольную длину.

Каждый внутренний массив неявно инициализируется null, а не пустым массивом.

Каждый внутренний массив должен быть создан вручную.

int[][] myArray = new int[3][]; // будет 3 одномерных
массива

myArray[0] = new int[] { 1, 3, 5, 7, 9 };

myArray[1] = new int[] { 0, 2, 4, 6 };

myArray[2] = new int[] { 11, 22 };

Строки и класс StringBuilder

Тип string (псевдоним класса System.String) в С# является неизменяемой
последовательностью символов.

Поддерживает и определяет символьные строки.

Является примитивным типом.

Является ссылочным типом данных.

Пустая строка имеет нулевую длину. Чтобы создать пустую строку, можно
использовать либо литерал, либо статическое поле string.Empty, для проверки, пуста ли
строка, можно либо выполнить сравнение эквивалентности, либо просмотреть свойство
Length строки.

Поскольку класс String неизменяемый, все методы, которые «манипулируют»
строкой, возвращают новую строку, оставляя исходную незатронутой (то же самое
происходит при повторном присваивании строковой переменной).

Строки и класс StringBuilder

Создание строк – создавать сроки можно, как используя переменную типа string и
присваивая ей значение, так и применяя один из конструкторов класса String:

string s1 = "hello";

string s2 = null;

string s3 = new String('a', 6);

string s4 = new String(new char[]{'w', 'o', 'r', 'l', 'd’});

Строка как набор символов.
Так как строка хранит коллекцию символов, в ней определен индексатор для

доступа к этим символам:

string s1 = "hello";
char ch1 = s1[1]; // символ 'e‘

Строки и класс StringBuilder

Конкатенация. Конкатенация строк может производиться с помощью оператора +, и
с помощью метода Concat:

string s1 = "hello";

string s2 = "world";

string s3 = s1 + " " + s2;

// результат: строка "hello world"

string s4 = String.Concat(s3, "!!!");

// результат: строка "hello world!!!"

Интерполяция строк. Начиная с версии языка C# 6.0 была добавлена такая
функциональность, как интерполяция строк.

Console.WriteLine($"Имя: {person.Name} Возраст: {person.Age}");

Знак доллара перед строкой указывает, что будет осуществляться интерполяция
строк. Внутри строки опять же используются плейсхолдеры {...}, только внутри фигурных
скобок уже можно напрямую писать те выражения, которые мы хотим вывести.

Строки и класс StringBuilder

Форматирование строк. Вместо конкатенации мы можем применять
форматирование:

Person person = new Person { Name = "Tom", Age = 23 };

Console.WriteLine("Имя: {0} Возраст: {1}",

person.Name, person.Age);

То же самое мы можем сделать с помощью метода String.Format:

string output = String.Format("Имя: {0} Возраст: {1}",

person.Name, person.Age);

В методе Format могут использоваться различные спецификаторы и описатели,
которые позволяют настроить вывод данных.

string result = String.Format("{0:C2}", 23.7); // $23.70

Строки и класс StringBuilder

Класс StringBuilder применяется когда необходимо выполнить большое количесво
операций над текстом большого объема.

Microsoft рекомендует использовать класс String в следующих случаях:
 При небольшом количестве операций и изменений над строками.
 При выполнении фиксированного количества операций объединения. В этом

случае компилятор может объединить все операции объединения в одну.
 Когда надо выполнять масштабные операции поиска при построении строки,

например IndexOf или StartsWith. Класс StringBuilder не имеет подобных
методов.

Класс StringBuilder рекомендуется использовать в следующих случаях:
 При неизвестном количестве операций и изменений над строками во время

выполнения программы.
 Когда предполагается, что приложению придется сделать множество подобных

операций.

Сравнение строк

При сравнении двух значений в .NET Framework проводится различие между
концепциями сравнения эквивалентности и сравнения порядка.

Сравнение эквивалентности проверяет, являются ли два экземпляра семантически
одинаковыми; сравнение порядка выясняет, какой из двух экземпляров будет
следовать первым в случае расположения их по возрастанию или убыванию.

Для сравнения эквивалентности строк можно использовать операцию == или один
из методов Equals типа string. Последние являются более универсальными, потому что
позволяют указывать такие опции, как нечувствительность к регистру символов.

Тип string не поддерживает операторы «<» и «>» для сравнений. Для сравнения
порядка строк можно применять либо метод экземпляра CompareTo, либо статические
методы Compare и CornpareOrdinal: они возвращают положительное или отрицательное
число либо ноль - в зависимости от того, находится первое значение до, после или
рядом со вторым.

Регулярные выражения
Используются при обработке больших текстов, позволяя существенно уменьшить

объемы кода по сравнению с использованием стандартных операций со строками.

Синтаксис регулярных выражений:
^ – соответствие должно начинаться в начале строки.
$ – соответствие должно быть в конце строки.
. – знак точки определяет любой одиночный символ.
* – предыдущий символ повторяется 0 и более раз.
+ – предыдущий символ повторяется 1 и более раз.
? – предыдущий символ повторяется 0 или 1 раз.
\s – соответствует любому пробельному символу.
\S – соответствует любому символу, не являющемуся пробелом.
\w – соответствует любому алфавитно-цифровому символу.
\W – соответствует любому не алфавитно-цифровому символу.
\d – соответствует любой десятичной цифре.
\D – соответствует любому символу, не являющемуся десятичной цифрой.

Регулярные выражения

Regex regex = new Regex(@"(\w*)рек(\w*)");
MatchCollection matches = regex.Matches(“река в реке”);
MatchCollection matches = regex.Matches(s);

if (matches.Count > 0)
{

foreach (Match match in matches)
Console.WriteLine(match.Value);

}
else
{

Console.WriteLine("Совпадений не найдено");
}

